Calculation of Porous Asphalt's Storage Capacity Project Name:_____ MSD Reviewer:____ Date Submitted: WM No._____ Property Address:_____ Development/Property Name:_____ GMP Number:_____ Design Firm: Design Engineer:______Telephone:_____Email:_____ KY PE No.: Step A. Site Planning Recommendation Define goals and primary function of porous asphalt based on the Porous Asphalt Step by Step Design Procedures beginning on page 18.5.11-9 as well as Table 18.5.11-B and Table 18.5.11-C. Refer to these sections as needed throughout the remainder of this calculation sheet. Step B. Determine the Required Water Quality Volume Rain Event, RE_{WOV} in inches (Refer to Chapter 18.3; A minimum depth of 0.6 inches must be used): inches Step C. Calculate the Required Water Quality Volume (WQ_V Required) of water to be removed by porous asphalt: ft^2 1. A = Contributing drainage area to porous asphalt: 2. RE_{WOV} = Required WQ_V Rain Event in inches: inches 3. I = Impervious cover of the contribution drainage area in percent: $R_V = 0.05 + 0.009 \text{ (I)} =$ a. 4. WQ_V Required^{*} = $(A/12)(RE_{WOV})(R_V)$ = Step D. Calculate the Provided Water Quality Volume (WQ_v Provided), or storage capacity ft^2 1. A = Area of porous asphalt: $\frac{0}{0}$ 2. p1 = porosity of base layer 1 (% void):3. d1 = depth of base layer 1: ft 4. $WQ_V Provided^* = (A)[(p1/100)(d1)] =$ ft^3 * Note: This formula only applies if the asphalt and sub soil have a 0% slope.

Step E. Determine the Managed Water Quality Volume (MWQ_v)

Determine the GMP Management Capacity of the porous asphalt in percent (Refer to

0/0

- 1. Table 18.3-C for percent):
- 2. MWQ_V = (1/100)(GMP Management Capacity in percent)(WQ_V Provided) =
- 3. Is all of the WQ_V Required managed or treated (i.e. is MWQ_V greater than or equal to WQ_V Required)?

If No, adjust WQ_V Provided parameters to allow for greater storage capacity and/or proceed to Step F.

If Yes, proceed to step H.

Calculation of Porous Asphalt's Storage Capacity	
Step F. Calculate the Required Remaining Water Quality Volume (RWQ _V)	
1. Required RWQ $_V$ = 2(WQ $_V$ Required - MWQ $_V$) =	ft ³
Step G. Select Alternate GMPs to Treat RWQ _v . Examples may include:	
Check all that apply. Include additional Calculation sheets as necessary.	
□ Green Wet Basin	
□ Green Dry Basin	
□ Catch Basin Inserts	
□ Proprietary Water Quality Units	
□ Other	
1. How much additional WQ _V is removed by the Alternate GMPs?	ft^3
2. Does the Alternate GMP remove all the Required RWQV?	
3. If Yes, proceed to step H.	
If No, alter existing GMPs or add new ones to provide adequate storage.	
Step H. Complete O&M documentation.	
Additional Calculations and Explanation (Required if design deviates from calculation sheet):	