Calculation for Infiltration Drain Storage Capacity Project Name:____ MSD Reviewer:____ Date Submitted: WM No._____ Property Address: Development/Property Name:_____ GMP Number:_____ Design Firm:_____ Design Engineer: ______ Telephone: _____ Email: _____ KY PE No.:_____ Step A. Site Planning Recommendation Define goals and primary function of infiltration practice based on the Infiltration Practice Step by Step Design Procedures beginning on page 18.5.20-8 as well as Table 18.5.20-A. Refer to this section as needed throughout the remainder of this calculation sheet. Step B. Determine the Required Water Quality Volume Rain Event, RE_{WOV} in inches (Refer to Chapter 18.3, A minimum depth of 0.6 inches must be used): inches Step C. Calculate the Required Water Quality Volume (WQV Required) of water to be removed by Infiltration Practice ft^2 1. A = Contributing drainage area to infiltration practice: 2. RE_{WOV} = Required WQ_V Rain Event in inches: inches 3. I = Impervious cover of the contribution drainage area in percent: $R_V = 0.05 + 0.009 \text{ (I)} =$ 4. WQ_V Required = $(A/12)(RE_{WOV})(R_V)$ = Step D. Determine minimum surface area of Infiltration Practice 1. Refer to table 18.5.2-A 2. WQ_V=required water quality volume: ft^3 3. h=average height of water above the infiltration drain during WQ_V rain event 4. d=depth of infiltration drain ft 5. P=porosity of media (% void): 6. A=Surface area of the ponding area of the infiltration drain=(WQv)/[(d)(P)+h] Step E. Calculate the Provided Water Quality Volume (WQ_V Provided), or storage capacity of Infiltration Practice 1. PD=Volume of Pretreatment Device (Optional, see Table 18.5.20-A for design of pretreatment device) ft^3 2. A = Area of infiltration drain: ft^2 3. φ = porosity of media (% void):

Step F. Compare the minimum calculated surface area of the infiltration practice to the input area of infiltration practice

4. M = depth of infiltration drain5. P = ponding depth of water

6. $WQ_V Provided = (A)[\varphi(M) + P] + PD$

1. Is the area in step E.2 greater than or equal to the minimum surface area in step D.6?

 ft^3

Calculation for Infiltration Drain Storage Capacity

Step G.	Determine the Managed Water Quality Volume (MWQ _V)	
1.	Determine the management capacity of the infiltration practice in percent (Refer to Table 18.3-C for percent)	
2.	. $MWQ_V = (1/100)(GMP \text{ Management Capacity in percent})(WQ_V \text{ Provided}) =$	$\frac{1}{1}$ ft ³
3.	. Is all of the WQ_V Required managed or treated (i.e. is MWQ_V greater than or equal to WQ_V Required)?	
	If No, adjust WQ_V Provided parameters to allow for greater storage capacity and/or proceed to Step H (if using a GMP with less runoff capacity).	
	If Yes, proceed to step J.	
Step H.	. Calculate the Required Remaining Water Quality Volume (RWQ _V)	
1.	Required RWQ _V = $2(WQ_V \text{ Required - } MWQ_V) =$	ft ³
Step I.	Select Alternate GMPs to Treat RWQ _v . Examples may include:	
	Check all that apply. Include additional calculation sheets as necessary.	
	□ Green Wet Basin	
	□ Green Dry Basin	
	□ Catch Basin Inserts	
	□ Proprietary Water Quality Units	
	□ Other	
1.	. How much additional WQ _V is removed by the Alternate GMPs?	ft^3
2.	. Does the Alternate GMP remove all the Required RWQV?	
3.	. If Yes, proceed to step J.	
	If No, alter existing GMPs or add new ones to provide adequate storage.	
Step J.	Complete O&M documentation.	
Addition	nal Calculations and Explanation (Required if design deviates from calculation sheet):	