

To: Robin Burch MSD Project Manager 4522 Algonquin Parkway Louisville, KY 40211 AECOM 500 West Jefferson Street Suite 1800 Louisville, KY 40202 aecom.com

Project name:

MSD Odor Control Master Plan

**Project ref:** 60644274

From: Maria DeLuca

Reviewed by: Alex Carciumaru Janet Strickland

Date:

September 29, 2021

# Memo

**Subject:** Technical Memorandum #7- Current Odor Technologies Performance Evaluation

## 1. Introduction

During previous phases of the Odor Control Master Plan, AECOM reviewed and compiled available data and documentation related to odor control and sampling within the Morris Forman Service Area. The purpose of this memorandum is to utilize available sampling data to evaluate the performance of the following odor control systems and technologies at the Morris Forman WQTC:

- 1. Biotower Odor Control (BOC)
- Solids Handling Odor Control (SHOC)
- 3. Regenerative Thermal Oxidizers (RTOs)\*
- 4. Main Equipment Building (MEB) Acid Scrubbers\*
- MEB Fugitive Dust Wet Scrubbers\*
- MEB Silo Dust Wet Scrubber\*
- \*- Currently being installed under the Emergency Dryer Replacement Project with anticipated completion in early 2022.

Based on the findings of the current performance evaluation, recommended action items were developed to improve the odor removal efficiency of existing odor control systems at the Morris Forman WQTC.

Technical Memorandum #7 MSD Odor Control Master Plan

Please refer to **TM#1** and **TM#5** for details relating to the data review and consolidation process and subsequent current odor impact evaluation conducted prior to the development of this report

# 2. Design and Operational Performance Review

The WQTC is currently equipped with several odor control technologies for the treatment of foul air generated from various process areas. A summary of the WQTC existing odor control technologies is shown in **Table 2-1** including manufacturer and model, number of units, installation year and associated odor sources.

**Table 2-1 Existing Odor Control Technologies Summary** 

| 0   | dor Control System                              | Manufacturer/ Model                            | # of<br>Units | Year<br>Installed        | Associated Odor Source(s)                                   |
|-----|-------------------------------------------------|------------------------------------------------|---------------|--------------------------|-------------------------------------------------------------|
| (1) | ВОС                                             | Bioway Purspring 1000                          | (2)           | 2007                     | Aerated Influent Channel                                    |
| (2) | SHOC                                            | Biorem Biofiltair                              | (2)           | 2006; Rebuilt<br>in 2011 | MEB Dewatering Area <sup>1</sup> , Sludge<br>Holding Tanks  |
| (3) | RTOs <sup>2</sup>                               | Gulf Coast Environmental<br>Systems 100-95-RTO | (2)           | Ongoing                  | MEB Dewatering Area, MEB<br>Sludge Drying Area <sup>1</sup> |
| (4) | MEB Acid Scrubbers <sup>2</sup>                 | Andritz TOP-85 DT-<br>CB/SUMP-VT520'2 OT-DB-SS | (2)           | Ongoing                  | MEB Dewatering Area, MEB<br>Sludge Drying Area <sup>1</sup> |
| (5) | MEB Fugitive Dust<br>Wet Scrubbers <sup>2</sup> | Monroe Environmental DT-<br>3000-SS            | (2)           | Ongoing                  | MEB Sludge Drying Area Fugitive<br>Dust                     |
| (6) | MEB Silo Wet Dust<br>Scrubber <sup>2</sup>      | Monroe Environmental DT-<br>1000               | (1)           | Ongoing                  | MEB Storage Silos Fugitive Dust                             |

<sup>&</sup>lt;sup>1</sup>MEB Dewatering Area and MEB Sludge Drying Area process sludge from the Digesters as well as hauled sludge.

It is important to note that the RTOs, MEB Acid Scrubbers, MEB Fugitive Dust Wet Scrubbers, and MEB Silo Dust Wet Scrubber listed in **Table 2-1** are currently being installed under the Emergency Dryer Replacement Project. MSD anticipates that the new systems will be commissioned in early 2022.

Existing equipment specifications and reports were evaluated to identify key design parameters for each of the existing odor technologies and is summarized in

**Table** 2-2. The project team also compiled previous performance testing results and expected performance parameters to assess current operational performance. As of 2021, performance testing data was available for the Bioway BOC system (**Section 2.1.1**) and the Biorem SHOC system (**Section 2.1.2**).

<sup>&</sup>lt;sup>2</sup>MSD is currently in construction phases of the Emergency Dryer Replacement Project which involves installation of new RTOs, MEB Acid Scrubbers, MEB Fugitive Dust Wet Scrubbers, and MEB Silo Dust Wet Scrubber.

**Table 2-2 Existing Odor Control System Design Summary** 

| Odor Control System                                 | Total Peak Average/ P Capacity (cfm) H <sub>2</sub> S (ppm |                             | Average/ Peak<br>Odor Conc. (ou) | Expected Performance                           |  |
|-----------------------------------------------------|------------------------------------------------------------|-----------------------------|----------------------------------|------------------------------------------------|--|
| (1) BOC                                             | 20,000                                                     | 60 (average)<br>/150 (peak) | N/A                              | N/A                                            |  |
| (2) SHOC                                            | 9,200                                                      | 150 / 200                   | <6,000 / 15,000                  | 99% H₂S Reduction; 90% TRS<br>Reduction        |  |
| (3) RTOs <sup>1</sup>                               | 10,000                                                     | N/A                         | N/A                              | 99% or less than 10 ppmv<br>Removal Efficiency |  |
| (4) MEB Acid<br>Scrubbers <sup>1</sup>              | 3,000                                                      | N/A                         | N/A                              | N/A                                            |  |
| (5) MEB Fugitive Dust<br>Wet Scrubbers <sup>1</sup> | 6,000                                                      | N/A                         | N/A                              | 95% Removal Efficiency                         |  |
| (6) MEB Silo Dust Wet<br>Scrubber <sup>1</sup>      | 1,000                                                      | N/A                         | N/A                              | 99.9% Removal of dust 2.0<br>microns or larger |  |

<sup>&</sup>lt;sup>1</sup>To be updated following ongoing improvements project

#### 2.1.1 BOC Performance Evaluation

MSD conducted performance testing of the BOC system in 2008. The study focused on  $H_2S$  removal efficiency and odor reduction efficiency. Performance data results are summarized in **Table 2-3** including inlet and outlet  $H_2S$  levels and odor concentrations during the 2008 monitoring period.  $H_2S$  measuring instrumentation did not have the ability to record  $H_2S$  values exceeding 2 ppm, therefore the peak  $H_2S$  values during the monitoring period are unknown and average values may be skewed.

**Table 2-3 BOC Performance Data Summary, 2008** 

|                                                                                              | H₂S    | Concentrat | ion (ppb)          | Odor Concentration (D/T) |                    |     |  |
|----------------------------------------------------------------------------------------------|--------|------------|--------------------|--------------------------|--------------------|-----|--|
| Location                                                                                     | Inlet  | Outlet     | Outlet % Reduction |                          | Outlet % Reduction |     |  |
| BOC Unit #1                                                                                  | 29,347 | 182        | 99.4%              | 13,000                   | 4,600              | 65% |  |
| BOC Unit #2                                                                                  | 31,112 | 155        | 99.5%              | 8,700                    | 6,200              | 28% |  |
| Average: 63,337 169 99.4% 10,850 5,400 47%                                                   |        |            |                    |                          |                    |     |  |
| *- Sampling Day #2 was utilized for evaluation due to high peak loading conditions on Day #1 |        |            |                    |                          |                    |     |  |

The 2008 performance testing results showed that average  $H_2S$  removal efficiency was approximately 99.4% between the two BOC units. However, odor reduction was generally poor with an average odor concentration of 5,400 D/T and an average odor reduction of 47%. Outlet odor emissions were likely impacted by alternate reduced sulfur compounds, amines, aldehydes, or VOCs which were not sampled during the 2008 performance tests.

MSD is currently considering the replacement of the existing BOCs under the Rehabilitation and Replacement of Primary Sedimentation Basins Project. The proposed process airflow for the new system is 16,500 cfm.

N/A= Data not available from previous reports and manufacturer specifications.

#### 2.1.2 SHOC Performance Evaluation

MSD has conducted several performance tests at the SHOC since the system was commissioned in 2006. The following sampling data was evaluated:

- 1. RSC and H<sub>2</sub>S Sampling, September 2008
- 2. RSC and H2S Sampling, November 2012
- 3. RSC Sampling, April 2013

**Table 2-4** summarizes the results of the SHOC sampling data listed above, including observed outlet RSC concentrations and associated percent (%) reduction at the SHOC units. The TRS concentration represents the sum of MM, DMS, and DMDS.

**Table 2-4 SHOC TRS Performance Data Summary** 

| Sampling       | Outlet Conc. (ppb) |     |      |      | % Reduction |       |       |       |       |       |
|----------------|--------------------|-----|------|------|-------------|-------|-------|-------|-------|-------|
| Location       | H₂S                | ММ  | DMS  | DMDS | TRS         | H₂S   | ММ    | DMS   | DMDS  | TRS   |
| September 2008 | September 2008     |     |      |      |             |       |       |       |       |       |
| SHOC Unit #1   | 116                | 266 | 1932 | 37   | 2235        | 99.9% | 99.0% | 52.8% | 96.1% | 93.1% |
| SHOC Unit #2   | 116                | 376 | 1742 | 144  | 2262        | 99.9% | 98.6% | 57.4% | 84.7% | 93.0% |
| November 2012  | November 2012      |     |      |      |             |       |       |       |       |       |
| SHOC Unit #1,  | <5                 | 262 | 35   | 13   | 310         | 99.9% | 92.3% | 39.7% | 63.9% | 65.3% |
| SHOC Unit #2   | <5                 | 106 | 34   | 4.4  | 144         | 99.9% | 96.9% | 41.4% | 87.8% | 75.3% |
| April 2013     |                    |     |      |      |             |       |       |       |       |       |
| SHOC Unit #1   | -                  | 483 | 262  | 146  | 100         | -     | 88.4% | 86.3% | 95.0% | 89.9% |
| SHOC Unit #2   | -                  | <3  | 29   | 4.4  | 40          | -     | 99.4% | 88.9% | 97.0% | 95.1% |

 $H_2S$ =Hydrogen Sulfide

MM= Methyl Mercaptan

DMS= Dimethyl Sulfide

DMDS= Dimethyl Disulfide

TRS=Total Reduced Sulfur; Sum of MM, DMDS, and DMS.

Available sampling data shows that both SHOC units met expected performance targets for  $H_2S$  percent reduction with 99.9% at both units, exceeding the expected performance level of 99%. SHOC Unit #1 did not meet the 90% TRS reduction threshold during any of the performance tests, with observed values ranging from 65.3% to 89.9% TRS removal. SHOC Unit #2 met the 90% TRS reduction performance level during the September 2020 and April 2013 sampling periods but fell significantly below expected levels during the November 2012 performance test with 65.3% TRS removal.

Table 2-5 shows the observed H<sub>2</sub>S percent reduction versus the expected performance levels provided by the equipment manufacturer.

|                                                                                                | H₂S % R         | eduction | TRS % Reduction |        |  |  |  |
|------------------------------------------------------------------------------------------------|-----------------|----------|-----------------|--------|--|--|--|
| Location                                                                                       | Observed Target |          | Observed        | Target |  |  |  |
| SHOC Unit #1                                                                                   | 99.9%           | 99%      | 65.3%-93.1%     | 90%    |  |  |  |
| SHOC Unit #2 99.9% 99% 75.3%-95.1% 90%                                                         |                 |          |                 |        |  |  |  |
| *-Percent removal targets are based on manufacturer performance data for expected performance. |                 |          |                 |        |  |  |  |

The SHOC system was also analyzed for outlet odor concentration (D/T) in July 2008. The sampling results showed the SHOC outlet to have an odor concentration in D/T of 4,100 during the first round of sampling and 5,700 in the second round of sampling. Based on previous dispersion modelling the recommended SHOC outlet concentration was 2,000 D/T and was predicted to have no offline impact to the community. The 2008 performance tests showed that the target SHOC outlet concentration of 2,000 D/T is not considered achievable based on current SHOC operations.

Based on the findings of previous performance data evaluation, the following conclusions were made regarding the existing SHOC system:

- SHOC system odor concentrations from July 2008 performance tests exceeded the target odor concentration of 2,000 D/T defined in previous air dispersion modelling reports
- SHOC Unit #2 has shown better operating performance than SHOC Unit #1 in terms of RSC removal
- 99% H2S reduction target was met during previous performance tests for both SHOC units
- 90% TRS reduction target was not met during the November 2012 performance test for both BOC units and during the April 2013 performance test for Unit #1

#### 2.1.3 MEB Odor Control Systems Performance Evaluation

The RTOs, MEB Acid Scrubbers, MEB Fugitive Dust Wet Scrubbers, and MEB Silo Dust Wet Scrubber are currently being installed under the Emergency Dryer Replacement Project. The odor removal efficiency of these systems will be evaluated following the construction completion during the commissioning.

AECOM

## 3. Conclusions and Recommendations

### 3.1 Conclusions

Available performance data was compiled and evaluated for each existing odor control system at the WQTC. Systems which are currently being rehabilitated or will be impacted by ongoing improvements projects were omitted from this performance evaluation. These systems include the RTOs, MEB Acid Scrubbers, MEB Fugitive Dust Wet Scrubbers, and MEB Silo Dust Wet Scrubber and will be evaluated after the Emergency Dryer Replacement project construction has been completed.

**Table 3-1** summarizes available performance data from previous reports including average  $H_2S$ , odor and TRS removal efficiency for each existing odor control system. A performance rating was included to indicate whether each performance efficiency target was met.

| Odor Control<br>System | Average Odor<br>Conc. (D/T)    | Average Odor<br>Conc. %<br>Reduction | Average H₂S<br>Conc. %<br>Reduction | Average TRS<br>Conc. %<br>Reduction        | Performance Rating(s)                                                                                                                                                                        |
|------------------------|--------------------------------|--------------------------------------|-------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) BOC                | Unit 1: 4,600<br>Unit 2: 6,200 | Unit 1: 65%<br>Unit 2: 28%           | Unit 1: 99.4%<br>Unit 2: 99.5%      | N/A                                        | <ul> <li>Odor Removal: Poor</li> <li>H<sub>2</sub>S Removal: Meets target<br/>removal efficiency (99%<br/>reduction)</li> </ul>                                                              |
| (2) SHOC               | 4,100-,5700                    | N/A                                  | 99.9%                               | Unit 1: 65.3%-93.1%<br>Unit 2: 75.3%-95.1% | <ul> <li>H<sub>2</sub>S Removal: Meets target<br/>removal efficiency (99%<br/>reduction)</li> <li>TRS Removal: Does not<br/>consistently meet target removal<br/>efficiency (90%)</li> </ul> |

**Table 3-1 Current Odor Technologies Performance Evaluation Summary** 

Available performance data showed that the BOC and SHOC systems met performance targets in terms of  $H_2S$  removal; however relatively high outlet odor concentrations were observed at both systems. In addition, the SHOC system did not meet TRS removal targets during multiple performance tests (November 2012, April 2013) which may be attributed to the presence of additional reduced sulfur compounds.

### 3.2 Recommendations

The following action items are proposed to improve the odor removal efficiency of the existing BOC and SHOC units:

- Evaluate the options for upgrading the current SHOC and BOC odor control technologies
- Consider replacing the BOC system under the Primary Sedimentation Basin Rehabilitation project (construction anticipated in 2022)
- Perform an air sampling program at all odor process sources after the completion of the current projects
- Predict community impact from the odor process sources by using air dispersion modelling and assess whether MSD's target odor concentration of 20 D/T at offline receptors is exceeded